國立嘉義高中104 學年度科學班能力檢定物理成就測驗試題P1/3 請將答案以 2B 鉛筆劃記在答案卡上。

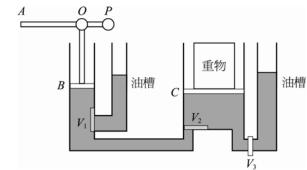
- 一、單選題: 每題 5 分, 共 35 分, 答錯不倒扣。
- 1. 質量 200 克的金屬小球溫度  $100^{\circ}$ C,比熱 0.1 卡/克°C,將其投入  $0^{\circ}$ C、380 克的冷水中,測得平衡溫度為  $t_1$ °C。之 後投入相同狀況的 2 個金屬球,平衡時溫度為  $t_2$ °C,再投入相同情況的 3 個金屬球,平衡溫度為  $t_3$ °C,最後投入 相同情況的 4 個小球, 測得最終平衡溫度為 t<sub>4</sub>°C, 則 t<sub>4</sub> 為多少? (不計容器吸熱及其他熱量散失) (A)5 (B) 20.8 (C) 25 (D) 34.5 (E) 50 °
- 2. 有一條質量極小的彈簧,鉛直懸掛一物體時伸長6公分。今將物體放在光滑水平面上,並以該彈簧水平拉動,若 彈簧伸長 3 公分,且重力加速度 g=10 公尺/秒  $^2$ ,則物體加速度為(A) 1 (B) 5 (C) 10 (D) 3 (E) 6 公尺/秒  $^2$ 。
- 四條載流導線彼此平行,排在正方形的四個角上,如圖所示。已知每條導線上的電流均相同, 則欲使對角線交點處的磁場為零時, $A \cdot B \cdot C$  的電流方向可能為  $(A) A \odot \cdot B \odot \cdot C \odot$  $B\otimes \cdot C \odot \quad (C)A\otimes \cdot B \odot \cdot C \odot \quad (D)A \odot \cdot B \odot \cdot C \otimes \quad (E)A \odot \cdot B \otimes \cdot C \odot \quad \circ$



- 太陽能光電是利用太陽能電池將太陽光能直接轉化為電能,而現階段太陽能產業技術以矽晶轉換能量效率為最 高,大約是25%。假設在台灣中部,每平方公尺的太陽能板吸收太陽光功率約100 瓦;考慮天氣變化、日光斜照 等因素,平均日照時間每天大約是 5 小時。若希望一個月的平均發電量為 450 度,所需的太陽能板的面積為多少 平方公尺? (A)4 (B)16 (C)120 (D)240 (E)480。
- 一物體放在光滑的水平面上,初速為零,先對物體施加一向東的恆力F,歷時1秒,隨即此力改為向西,大小不 變,歷時 1 秒,如此反覆,只改變力的方向,共歷時 10 秒,在此 10 秒內 (A)物體時而向東,時而向西運動,在 10 秒後, 靜止於出發點 (B)物體在偶數秒時會回到原出發點 (C)物體在 0~1 秒和 1~2 秒的位移大小相等但方向 相反 (D)物體在 0.5 秒時的速度和 1.5 秒時的速度大小相同,但方向相反 (E)物體 0.5 秒時的速度和 1.5 秒時的速 度大小、方向皆相同 。
- 質量 3 公斤的架子 A 放在磅秤上,架上有一顆質量 1 公斤的小球 B,沿著支架下滑。若 B 下滑加速 度  $6\text{m/s}^2$ ,且  $g=10\text{m/s}^2$ ,則下滑過程中,磅秤的讀數為 (A)1.6 (B)3.0 (C)3.4 (D)4.0 (E)7.0 公斤 重。
- 7. 帕斯卡原理是:對不易壓縮的密閉液體,所施的壓力,必可均匀的傳遞到液體中的任一部份及器壁上,其數值不 改變。假設在封閉管路面積  $A_1$  的活塞上施力  $F_1$ ,該處增加壓力  $\frac{F_1}{A_1}$  會傳至管內各處,而對面積  $A_2$  的活塞施力

 $F_2 = \frac{F_1}{A}$   $A_2$  。「油壓千斤頂」便是結合帕斯卡原理與槓桿原理。下圖是油壓千斤頂的示意圖。其中 B、C 為油缸內的

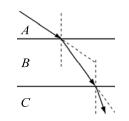
活塞, $V_1$ 、 $V_2$ 為單向閥( $V_1$ 向左開, $V_2$ 向上開), $V_3$ 為洩油開關,而 A 為施力處。這個裝置的操作步驟如下:


步驟 1: 將 A 端拉起,活塞 B 向上移動使  $V_1$  開啟,將油槽的油引入油管內。

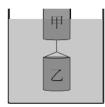
步驟 2: 將 A 端下壓,活塞 B 向下移動使  $V_1$  關閉而使  $V_2$  開啟,將壓力傳至活塞 C,使重物向上抬起。 重複步驟 1、2,便能將重物由低處舉至高處。

已知 B、C 兩活塞的面積分別為  $A_1$ 、 $A_2$ ( $A_1$ < $A_2$ ),O 點到 A、P 的距離分別為 x、y (x>y)。今施一外力 F 將槓桿上 的 A 端下壓,此時:

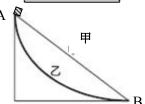
(A)活塞 B 增加的壓力為 $\frac{F}{A_1}$  (B)活塞 B 增加的壓力為 $\frac{F}{A_1} \cdot \frac{x}{y}$  (C)活塞 C 增加的壓力為 $\frac{F}{A_2}$  (D)活塞 C 增加的壓力為 $\frac{F}{A_1} \cdot \frac{x+y}{y}$ 


(E)活塞 C 受力增加 F



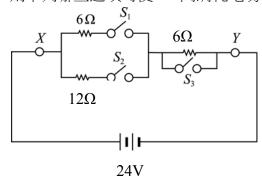

## 國立嘉義高中104 學年度科學班能力檢定物理成就測驗試題 P2/3

## 二、多選題: 每題5分,共65分。

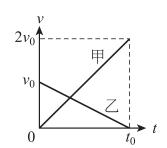

8. 一光東由介質 A 入射,其行經的路徑如圖所示,則下列敘述哪些正確?(A)光在介質中的速率大小為 A > B > C (B) 光在介質中的速率大小為 C > B > A (C) 光在介質中的波長大小為 C > B > A (D) 光在介質中的波長大小為 A > B > C (E) 光在介質中的頻率大小為 A > B > C  $\circ$ 



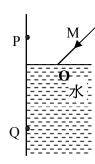
9. 有甲、乙兩物體皆為實心圓柱體,乙吊在甲的下方並放入水中,如圖,連接甲乙之細繩重量及 體積皆可忽略,則 (A)甲物所受浮力大於甲物重量 (B)甲物所受浮力等於甲物重量 (C)乙物 所受浮力大於乙物重量 (D)乙物之密度必大於水 (E)甲、乙罐所受總浮力等於甲、乙罐總重量。



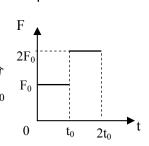

10. 體積很小的物體由靜止開始自高處 A 點沿著甲乙兩路徑回到地面上 B 點,其中甲為直線, 乙為曲線,兩路徑均光滑無摩擦力。已知走甲路徑的時間大於乙路徑,則下列關於物體沿此 二路徑由 A 移至 B 的敘述,正確的有哪些? (A)位移:乙大於甲 (B)平均速率:乙大於甲 (C) 平均速度大小:乙大於甲 (D)速度變化量的大小:乙大於甲 (E)平均加速度大小:乙大於甲。




11. 如右圖所示,電路中所有的開關原本都是打開的, 則下列哪些選項可使 XY 間消耗電功率為 48 瓦特?

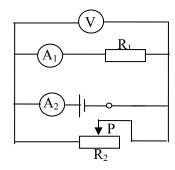

| 選項  | $S_1$ | $S_2$ | $S_3$ |
|-----|-------|-------|-------|
| (A) | 屬     | 屬     | 舅     |
| (B) | 舅     | 開     | 開     |
| (C) | 舅     | 開     | 舅     |
| (D) | 開     | 舅     | 開     |
| (E) | 開     | 關     | 舅     |




12. 甲、乙兩車在同一車道上,當乙車通過甲車時,甲車開始運動。若以乙車通過甲車的時刻為 t=0,兩車的速度-時間關係圖,如圖所示。根據此圖,考慮兩車在時間  $t_0$  內的運動時,下 列敘述哪些正確? (A)甲車平均速度為乙車的 2 倍 (B)甲車位移為乙車的 4 倍 (C)甲車加速度大小為乙車的 2 倍 (D)甲、乙兩車的加速度方向相同 (E)甲車於  $\frac{1}{2}t_0$  時追上乙車。

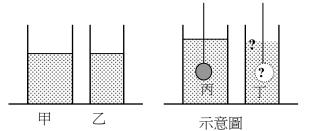


13. 如圖,雷射光束沿著 MO 方向入射到水面(O 為入射點),並在左邊屏幕上出現 PQ 兩紅色光點。則下列敘述正確的有哪些? (A)若入射點 O 的位置不變,欲使 P 點向上移動,需將雷射光束 MO 順時針轉動 (B)若入射點 O 的位置不變,欲使 Q 點向上移動,需將雷射光束 MO 順時針轉動 (C)若雷射光的方向不變,但讓水面位置變高,此時 P 點會向上移動 (D)若雷射光的方向不變,但讓水面位置變高,此時 Q 點會向上移動 (E)若改用綠光雷射,但入射方向與水面高度均不變,此時 P 點位 Q 置不改變。



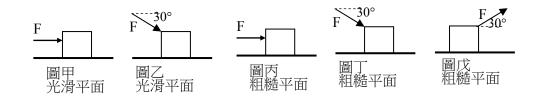

14. 物體自靜止開始受到方向固定不變的外力作用,外力隨時間變化的關係如圖示。令物體的起始位置為座標原點,外力方向為+x 方向,在  $t_0 \cdot 2t_0$ 時刻,物體的位置座標分別為  $x_1 \cdot x_2$ ,速度大小分別為  $v_1 \cdot v_2$ 。從施力開始到  $t_0$ 時刻,外力對物體作的功為  $W_1$ ,物體的平均加速度為  $a_1$ ;從  $t_0$ 到  $2t_0$ 时刻,外力對物體作的功為  $W_2$ ,物體的平均加速度為  $a_2$ 。則下列敘述正確的有哪些?(A) $x_2$ =4 $x_1$ 



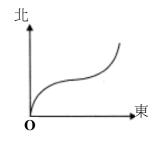

(B) 
$$v_2=3v_1$$
 (C)  $a_2=2a_1$  (D)  $W_2=8W_1$  (E)全程的平均速度  $=\frac{v_1+v_2}{2}$  。

15. 右圖電路中電源電壓保持不變,安培計 A<sub>1</sub>、A<sub>2</sub>本身的電阻可不計。當可變電阻 R<sub>2</sub>的接頭 P 向右移動時(電阻 R<sub>2</sub> 會變大),下列關於伏特計 V 與安培計 A<sub>1</sub>、A<sub>2</sub> 讀數的敘述,正確的 有哪些?(A) V 讀數變小 (B) A<sub>1</sub> 讀數變小 (C)A<sub>2</sub>與 A<sub>1</sub> 讀數的差值變小 (D)V 與 A<sub>2</sub> 讀數的 比值變大 (E)V 與 A<sub>1</sub> 讀數的乘積不變。

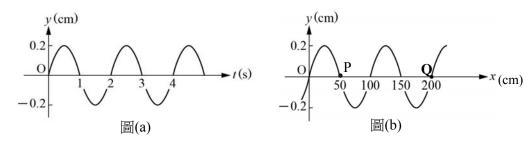



## 國立嘉義高中104 學年度科學班能力檢定物理成就測驗試題 P3/3

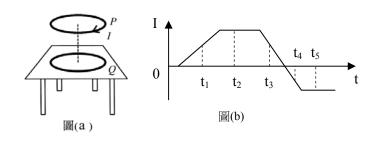
16. 水平桌面上有甲乙兩個柱狀容器,內裝有深度相同、密度分別為  $d_1$ 、  $d_2$ 的液體,已知甲乙底面積比為 4:3,液體對容器底部的壓力比為 1:2。 今將丙丁兩金屬球以細線懸掛,分別沒入液體中,但不與容器底部接觸,且液體均沒有溢出,此時兩容器底部受到的液體壓力相等。若丙丁的體積分別為  $V_1$ 、 $V_2$ ,所受的浮力分別為  $B_1$ 、 $B_2$ ,則下列敘述正確的有哪些?(A)  $d_1$ < $d_2$  (B)  $V_1$ < $V_2$  (C)  $V_1$ > $V_2$  (D)  $B_1$ < $B_2$  (E)  $B_1$ > $B_2$ 。




- 17. 已知接觸面間的摩擦力與摩擦係數的關係為:
  - (1)最大靜摩擦力=靜摩擦係數×垂直於接觸面的作用力;
  - (2)動摩擦力=動摩擦係數×垂直於接觸面的作用力


如圖甲~戊,在水平面上以不同的角度對相同物體施以等大小的外力 F,使其產生相同的位移,其中甲乙為光滑平面,丙丁戊的粗糙程度相同。若  $W = W_{\text{t}}$ 分別表示圖甲~圖戊中 F 對物體所作的功, $V = W_{\text{t}}$ 分別為圖甲~圖戊中物體的末速,則下列敘述正確的有哪些? (A)  $W = W_{\text{t}}$  (B)  $W = W_{\text{t}}$  (C)  $W_{\text{t}} = W_{\text{t}}$  (D)  $V_{\text{t}} > V_{\text{t}}$  (E)  $V_{\text{t}} = V_{\text{t}}$  。




- 18. 右圖為一質點在平面上運動的軌跡,O為出發點,則下列關於質點運動狀態的敘述,正確的有哪些?
  - (A)在圖示的範圍內,質點平均速度的量值小於平均速率
  - (B)出發後質點的速率先增加後減少
  - (C)若質點往東的方向為等速度運動,則往北的速度先變慢後變快
  - (D)若質點往北的方向為等速度運動,則往東的速度先變慢後變快
  - (E)質點在圖示範圍內,沒有折返。



19. 繩上有一連續週期波,繩上某質點 P 其位置與時間的關係如圖(a),在 t=3 秒時,繩上的波形如圖(b)所示,則下列關於此週期波的敘述,正確的有哪些? (A)波速為 50 cm/s (B)波速為 25 cm/s (C)此波向右傳播 (D)此波向左傳播 (E)圖(b)中,Q點再經 0.5 秒會振動到最高點。



20. 金屬線圈 Q 靜置於水平桌面,其正上方有另一固定不動的線圈 P,兩線圈半徑相同、圈面平行,且圓心連線與圈面垂直。P 線圈通有隨時間變化的電流 I,電流隨時間變化關係如圖(b)(令(a)圖中線圈 P 的電流方向為正)。若線圈 Q 的重量為 W,所受桌面的正向力為 N,則下列敘述正確的有哪些?(A) $t_1$ 時刻,N<W (B)  $t_3$ 時刻,N<W (C)  $t_4$ 時刻,N<W (D)  $t_5$ 時刻,N=W (E)  $t_3$ 、 $t_4$ 時刻,Q 線圈中的電流方向相反。

