國立嘉義高中 102 學年度學術性向資賦優異【數理類】複選暨高瞻班複選測驗數學實作測驗及觀察試題

填充題:共20題,每題5分,共100分。

- 1. 設一實數的等比數列的第 7 項為 16,第 10 項為 128。如果此數列的前 n 項之總和大於 10^5 ,則 n 的最小值為 ______。
- 2. 化簡 $\left(\frac{1}{\sqrt{3-\sqrt{8}}}\right)^4 + 4\left(\frac{1}{\sqrt{3-\sqrt{8}}}\right)^3 + 4\left(\frac{1}{\sqrt{3-\sqrt{8}}}\right)^2 + 4\left(\frac{1}{\sqrt{3-\sqrt{8}}}\right) 5$ 之值為______。
- 3. 設多項式f(x) 除以(x-1)得商式為 $x^{2014}-3x^{103}-1$,餘式為6,求f(x) 除以 $(x-1)^2$ 的餘式為_____。
- 4. 已知 f(x)為三次多項式且首項係數為 1,若 $f(\log_2 3) = \log_2 3$, $f(\log_2 6) = \log_2 6$, $f(\log_2 12) = \log_2 12$,求 $f(\log_2 48) \log_2 48 =$ _____。
- 5. 若多項式滿足f(x)與g(x)滿足 $f(x)-2g(x)=x^5+5x^2+6\log 5$,且g(x)除以x+2的餘式為 $\log 8$,f(1)=2,則f(x)除以 x^2+x-2 的餘式為_____。
- 6. 若 α 、 β 為整係數方程式 $10x^4 + ax^3 + bx^2 + cx + 3 = 0$ 的兩個正有理根,且 $\alpha + \beta = \frac{16}{5}$,則方程式的另兩根之積為
- 7. 已知 $a \cdot b$ 皆為正數,且 ab = 64, $a^{\log_2 b} = 8$,求 $(2 + \log_2 a)(2 + \log_2 b)(\log_a b + \log_b a) = _____$ 。
- 8. 設 $a \cdot b$ 為實數,方程式 $x^3 + ax^2 + bx + 32 = 0$ 有一實數根及二虛根 $2\alpha \cdot \alpha^2$,求數對(a,b) =______。
- 9. 設二次函數 f(x)滿足 f(x+2) = f(-x+2),其圖形與 x 軸所截的線段長為 6,在 y 軸上的截距為 10,則 f(x) = 。
- 10. 已知 < a_n > 是首項 a_1 且公比 r 的等比數列,且對於任意正整數 n ,都滿足 a_n > 0 ,令 $S_n = \log a_1 + \log a_2 + \log a_3 + \dots + \log a_n \circ \Xi S_{36} = S_{29}$ 時, $a_1 = r^k$,求 $k = \underline{\hspace{1cm}}$ 。
- 11. 當 $-1 \le x \le 2$ 時, $f(x) = x^2 2mx + 2m + 3$ 之值恆正,求實數 m 的範圍為______。

12. 若方程式 $x^2 + (1-2n)x + n^2 = 0$ 的兩根為 $\alpha_n \cdot \beta_n$,則

$$\frac{1}{(\alpha_1+1)(\beta_1+1)} + \frac{1}{(\alpha_2+1)(\beta_2+1)} + \frac{1}{(\alpha_3+1)(\beta_3+1)} + \dots + \frac{1}{(\alpha_{10}+1)(\beta_{10}+1)} = \underline{\hspace{2cm}} \circ$$

- 13. 設 $\alpha \cdot \beta \cdot \gamma$ 為方程式 $x^3 + x^2 + 2x + 1 = 0$ 的三根,求以 $\alpha^3 \cdot \beta^3 \cdot \gamma^3$ 為三根的三次方程式為______。
- 14. 設 $f(x) = |x^2 3x| x + 1$,求方程式 f(f(x)) = 1有_________個相異實數解。
- 15. 對所有實數 x 與 y , $3^x + 3^{-y} = f(x) + f(y) + g(x) g(y)$ 恆成立 ,且 g(0) = 0 。求 $f(1) + g(2) = ______$ 。
- 17. 求方程式 $\log_2(\frac{1}{2^{x+1}} + \frac{1}{3^{x-1}}) = x(\log_2 3 2)$ 的解為 $x = \underline{\hspace{1cm}}$ 。
- 18. [x]表示小於或等於 x 的最大整數,例如 [2.1] = 2, [-4.3] = -5, [6] = 6。若滿足 $[x^2] = [(x+3)^2]$ 的 x 之範圍為 $b \le x \le a$,則 $a-b = _____$ 。
- 19. 設 A,B 均為四位數,已知 $\log_{10} A = m + \log_{10} n$,其中 m,n 為正整數。若 B 的千位數與百位數之和為 5n-4,且 A-B=5m-n-2,求數對(A,B)=_____。

~ 試題到此結束 ~